441 research outputs found

    On the Implementation of Spread Spectrum Fingerprinting in Asymmetric Cryptographic Protocol

    Get PDF
    <p/> <p>Digital fingerprinting of multimedia contents involves the generation of a fingerprint, the embedding operation, and the realization of traceability from redistributed contents. Considering a buyer's right, the asymmetric property in the transaction between a buyer and a seller must be achieved using a cryptographic protocol. In the conventional schemes, the implementation of a watermarking algorithm into the cryptographic protocol is not deeply discussed. In this paper, we propose the method for implementing the spread spectrum watermarking technique in the fingerprinting protocol based on the homomorphic encryption scheme. We first develop a rounding operation which converts real values into integer and its compensation, and then explore the tradeoff between the robustness and communication overhead. Experimental results show that our system can simulate Cox's spread spectrum watermarking method into asymmetric fingerprinting protocol.</p

    Recent Fingerprinting Techniques with Cryptographic Protocol

    Get PDF

    Efficiently Decodable Non-Adaptive Threshold Group Testing

    Full text link
    We consider non-adaptive threshold group testing for identification of up to dd defective items in a set of nn items, where a test is positive if it contains at least 2≀u≀d2 \leq u \leq d defective items, and negative otherwise. The defective items can be identified using t=O((du)u(ddβˆ’u)dβˆ’u(ulog⁑du+log⁑1Ο΅)β‹…d2log⁑n)t = O \left( \left( \frac{d}{u} \right)^u \left( \frac{d}{d - u} \right)^{d-u} \left(u \log{\frac{d}{u}} + \log{\frac{1}{\epsilon}} \right) \cdot d^2 \log{n} \right) tests with probability at least 1βˆ’Ο΅1 - \epsilon for any Ο΅>0\epsilon > 0 or t=O((du)u(ddβˆ’u)dβˆ’ud3log⁑nβ‹…log⁑nd)t = O \left( \left( \frac{d}{u} \right)^u \left( \frac{d}{d -u} \right)^{d - u} d^3 \log{n} \cdot \log{\frac{n}{d}} \right) tests with probability 1. The decoding time is tΓ—poly(d2log⁑n)t \times \mathrm{poly}(d^2 \log{n}). This result significantly improves the best known results for decoding non-adaptive threshold group testing: O(nlog⁑n+nlog⁑1Ο΅)O(n\log{n} + n \log{\frac{1}{\epsilon}}) for probabilistic decoding, where Ο΅>0\epsilon > 0, and O(nulog⁑n)O(n^u \log{n}) for deterministic decoding

    A framework for generalized group testing with inhibitors and its potential application in neuroscience

    Get PDF
    The main goal of group testing with inhibitors (GTI) is to efficiently identify a small number of defective items and inhibitor items in a large set of items. A test on a subset of items is positive if the subset satisfies some specific properties. Inhibitor items cancel the effects of defective items, which often make the outcome of a test containing defective items negative. Different GTI models can be formulated by considering how specific properties have different cancellation effects. This work introduces generalized GTI (GGTI) in which a new type of items is added, i.e., hybrid items. A hybrid item plays the roles of both defectives items and inhibitor items. Since the number of instances of GGTI is large (more than 7 million), we introduce a framework for classifying all types of items non-adaptively, i.e., all tests are designed in advance. We then explain how GGTI can be used to classify neurons in neuroscience. Finally, we show how to realize our proposed scheme in practice

    Image Post-Processing and Interpretation

    Get PDF

    Reversible Data Hiding in Encrypted Text Using Paillier Cryptosystem

    Full text link
    Reversible Data Hiding in Encrypted Domain (RDHED) is an innovative method that can keep cover information secret and allows the data hider to insert additional information into it. This article presents a novel data hiding technique in an encrypted text called Reversible Data Hiding in Encrypted Text (RDHET). Initially, the original text is converted into their ASCII values. After that, the Paillier cryptosystem is adopted to encrypt all ASCII values of the original text and send it to the data hider for further processing. At the data hiding phase, the secret data are embedded into homomorphically encrypted text using a technique that does not lose any information, i.e., the homomorphic properties of the Paillier cryptosystem. Finally, the embedded secret data and the original text are recovered at the receiving end without any loss. Experimental results show that the proposed scheme is vital in the context of encrypted text processing at cloud-based services. Moreover, the scheme works well, especially for the embedding phase, text recovery, and performance on different security key sizes

    Coded DNN Watermark: Robustness against Pruning Models Using Constant Weight Code

    Get PDF
    Deep Neural Network (DNN) watermarking techniques are increasingly being used to protect the intellectual property of DNN models. Basically, DNN watermarking is a technique to insert side information into the DNN model without significantly degrading the performance of its original task. A pruning attack is a threat to DNN watermarking, wherein the less important neurons in the model are pruned to make it faster and more compact. As a result, removing the watermark from the DNN model is possible. This study investigates a channel coding approach to protect DNN watermarking against pruning attacks. The channel model differs completely from conventional models involving digital images. Determining the suitable encoding methods for DNN watermarking remains an open problem. Herein, we presented a novel encoding approach using constant weight codes to protect the DNN watermarking against pruning attacks. The experimental results confirmed that the robustness against pruning attacks could be controlled by carefully setting two thresholds for binary symbols in the codeword
    • …
    corecore